Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.809
Filtrar
1.
Food Funct ; 15(4): 2221-2233, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38318756

RESUMO

Motilin is an important hormonal regulator in the migrating motor complex (MMC). Free fatty acid receptor-1 (FFAR1, also known as GPR40) has been reported to stimulate motilin release in human duodenal organoids. However, how FFAR1 regulates gastric motility in vivo is unclear. This study investigated the role of FFAR1 in the regulation of gastric contractions and its possible mechanism of action using Suncus murinus. Firstly, intragastric administration of oleic acid (C18:1, OA), a natural ligand for FFAR1, stimulated phase II-like contractions, followed by phase III-like contractions in the fasted state, and the gastric emptying rate was accelerated. The administration of GW1100, an FFAR1 antagonist, inhibited the effects of OA-induced gastric contractions. Intravenous infusion of a ghrelin receptor antagonist (DLS) or serotonin 4 (5-HT4) receptor antagonist (GR125487) inhibited phase II-like contractions and prolonged the onset of phase III-like contractions induced by OA. MA-2029, a motilin receptor antagonist, delayed the occurrence of phase III-like contractions. In vagotomized suncus, OA did not induce phase II-like contractions. In addition, OA promoted gastric emptying through a vagal pathway during the postprandial period. However, OA did not directly act on the gastric body to induce contractions in vitro. In summary, this study indicates that ghrelin, motilin, 5-HT, and the vagus nerve are involved in the role of FFAR1 regulating MMC. Our findings provide novel evidence for the involvement of nutritional factors in the regulation of gastric motility.


Assuntos
Ácidos Graxos não Esterificados , Motilidade Gastrointestinal , Humanos , Animais , Ácidos Graxos não Esterificados/farmacologia , Motilina/metabolismo , Motilina/farmacologia , Complexo Mioelétrico Migratório/fisiologia , Estômago/fisiologia , Musaranhos/metabolismo
2.
Neurogastroenterol Motil ; 36(2): e14723, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062544

RESUMO

BACKGROUND: Despite evidence that slow-wave dysrhythmia in the stomach is associated with clinical conditions such as gastroparesis and functional dyspepsia, there is still no widely available device for long-term monitoring of gastric electrical signals. Actionable biomarkers of gastrointestinal health are critically needed, and an implantable slow-wave monitoring device could aid in the establishment of causal relationships between symptoms and gastric electrophysiology. Recent developments in the area of wireless implantable gastric monitors demonstrate potential, but additional work and validation are required before this potential can be realized. METHODS: We hypothesized that translating an existing implantable cardiac monitoring device, the Reveal LINQ™ (Medtronic), would present a more immediate solution. Following ethical approval and laparotomy in anesthetized pigs (n = 7), a Reveal LINQ was placed on the serosal surface of the stomach, immediately adjacent to a validated flexible-printed-circuit (FPC) electrical mapping array. Data were recorded for periods of 7.5 min, and the resultant signal characteristics from the FPC array and Reveal LINQ were compared. KEY RESULTS: The Reveal LINQ device recorded slow waves in 6/7 subjects with a comparable period (p = 0.69), signal-to-noise ratio (p = 0.58), and downstroke width (p = 0.98) to the FPC, but with reduced amplitude (p = 0.024). Qualitatively, the Reveal LINQ slow-wave signal lacked the prolonged repolarization phase present in the FPC signals. CONCLUSIONS & INFERENCES: These findings suggest that existing cardiac monitors may offer an efficient solution for the long-term monitoring of slow waves. Translation toward implantation now awaits.


Assuntos
Motilidade Gastrointestinal , Gastroparesia , Suínos , Humanos , Animais , Motilidade Gastrointestinal/fisiologia , Estômago/fisiologia , Fenômenos Eletrofisiológicos
3.
Acta Biomater ; 173: 167-183, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37984627

RESUMO

The complex mechanics of the gastric wall facilitates the main digestive tasks of the stomach. However, the interplay between the mechanical properties of the stomach, its microstructure, and its vital functions is not yet fully understood. Importantly, the pig animal model is widely used in biomedical research for preliminary or ethically prohibited studies of the human digestion system. Therefore, this study aims to thoroughly characterize the mechanical behavior and microstructure of the porcine stomach. For this purpose, multiple quasi-static mechanical tests were carried out with three different loading modes, i.e., planar biaxial extension, radial compression, and simple shear. Stress-relaxation tests complemented the quasi-static experiments to evaluate the deformation and strain-dependent viscoelastic properties. Each experiment was conducted on specimens of the complete stomach wall and two separate layers, mucosa and muscularis, from each of the three gastric regions, i.e., fundus, body, and antrum. The significant preconditioning effects and the considerable regional and layer-specific differences in the tissue response were analyzed. Furthermore, the mechanical experiments were complemented with histology to examine the influence of the microstructural composition on the macrostructural mechanical response and vice versa. Importantly, the shear tests showed lower stresses in the complete wall compared to the single layers which the loose network of submucosal collagen might explain. Also, the stratum arrangement of the muscularis might explain mechanical anisotropy during tensile tests. This study shows that gastric tissue is characterized by a highly heterogeneous microstructure with regional variations in layer composition reflecting not only functional differences but also diverse mechanical behavior. STATEMENT OF SIGNIFICANCE: Unfortunately, only few experimental data on gastric tissue are available for an adequate material parameter and model estimation. The present study therefore combines layer- and region-specific stomach wall mechanics obtained under multiple loading conditions with histological insights into the heterogeneous microstructure. On the one hand, the extensive data sets of this study expand our understanding of the interplay between gastric mechanics, motility and functionality, which could help to identify and treat associated pathologies. On the other hand, such data sets are of high relevance for the constitutive modeling of stomach tissue, and its application in the field of medical engineering, e.g., in the development of surgical staplers and the improvement of bariatric surgical interventions.


Assuntos
Colágeno , Estômago , Suínos , Animais , Humanos , Estômago/fisiologia , Modelos Animais , Colágeno/química , Anisotropia , Testes Mecânicos , Fenômenos Biomecânicos , Estresse Mecânico
4.
J Neural Eng ; 20(6)2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38100816

RESUMO

Objective.Neural regulation of gastric motility occurs partly through the regulation of gastric bioelectrical slow waves (SWs) and phasic contractions. The interaction of the tissues and organs involved in this regulatory process is complex. We sought to infer the relative importance of cellular mechanisms in inhibitory neural regulation of the stomach by enteric neurons and the interaction of inhibitory and excitatory electrical field stimulation.Approach.A novel mathematical model of gastric motility regulation by enteric neurons was developed and scenarios were simulated to determine the mechanisms through which enteric neural influence is exerted. This model was coupled to revised and extended electrophysiological models of gastric SWs and smooth muscle cells (SMCs).Main results.The mathematical model predicted that regulation of contractile apparatus sensitivity to intracellular calcium in the SMC was the major inhibition mechanism of active tension development, and that the effect on SW amplitude depended on the inhibition of non-specific cation currents more than the inhibition of calcium-activated chloride current (kiNSCC= 0.77 vs kiAno1= 0.33). The model predicted that the interaction between inhibitory and excitatory neural regulation, when applied with simultaneous and equal intensity, resulted in an inhibition of contraction amplitude almost equivalent to that of inhibitory stimulation (79% vs 77% decrease), while the effect on frequency was overall excitatory, though less than excitatory stimulation alone (66% vs 47% increase).Significance.The mathematical model predicts the effects of inhibitory and excitatory enteric neural stimulation on gastric motility function, as well as the effects when inhibitory and excitatory enteric neural stimulation interact. Incorporation of the model into organ-level simulations will provide insights regarding pathological mechanisms that underpin gastric functional disorders, and allow forin silicotesting of the effects of clinical neuromodulation protocols for the treatment of these disorders.


Assuntos
Cálcio , Estômago , Estômago/fisiologia , Miócitos de Músculo Liso , Neurônios , Contração Muscular/fisiologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-38082764

RESUMO

Cervical vagus nerve stimulation (cVNS) is a promising neuromodulation therapy for treating symptoms of disease in peripheral organs. The rat is a common animal model for studying and trialing new applications of cVNS therapy, but the stomach and its activity in rats is less well characterized than other animals, such as pigs. We sought to investigate the effects of acute, in vivo cVNS on gastric bioelectrical activity as an intermediate step to computational modeling of the effects of cVNS on gastric smooth muscle electromechanical coupling. Here we show a method of detecting bioelectrical gastric slow wave events using a non-linear energy operator. The marked events are compared to the underlying bioelectrical slow wave activity.The mean propagation velocity before stimulation was 0.79 ± 0.31 mm s-1, and the mean interval was 17.4 ± 1.4 s. During cVNS, there was a significant increase in velocity (1.02 ± 0.69 mm s-1; p < 0.001), and decrease in interval (15.4 ± 2.9 s; p = 0.0196). At stimulation onset, premature slow waves were induced at an ectopic pacemaker location and waves originating at the ectopic and initial pacemaker sites continued to collide following the cessation of cVNS.This work forms the basis for more thorough investigation of the effects of cVNS on gastric bioelectrical slow wave activity and consequential smooth muscle contractions in rats. A better understanding of the effects of cVNS on gastric function will allow the refinement of cVNS therapy to target the stomach, and avoid off-target effects on the stomach.Clinical relevance- This work presents a signal processing and analysis approach for the investigation of cervical vagus nerve stimulation on gastric bioelectrical activity in rats. Vagus nerve stimulation may enable the control and amelioration of hunger, gastric emptying, or functional gastric disorders.


Assuntos
Marca-Passo Artificial , Estimulação do Nervo Vago , Ratos , Animais , Suínos , Estômago/fisiologia
6.
Artigo em Inglês | MEDLINE | ID: mdl-38082999

RESUMO

Gastric rhythmic contractions are regulated by bioelectrical events known as slow waves (SW). Abnormal SW activity is associated with gastric motility disorders. Gastric pacing is a potential treatment method to restore rhythmic SW activity. However, to date, the efficacy of gastric pacing is inconsistent and the underlying mechanisms of gastric pacing are poorly understood. Optical mapping is widely used in cardiac electrophysiology studies. Its immunity to pacing artifacts offers a distinct advantage over conventional electrical mapping for studying pacing. In the present study, we first found that optical mapping can image pacing-induced virtual electrode polarization patterns in the stomach (adjacent regions of depolarized and hyperpolarized tissue). Second, we found that elicited SWs usually (15 of 16) originated from the depolarized areas of the stimulated region (virtual cathodes). To our knowledge, this is the first direct observation of virtual electrode polarization patterns in the stomach. Conclusions: Optical mapping can image virtual electrode polarization patterns during gastric pacing with high spatial resolution.Clinical Relevance- Gastric pacing is a potential therapeutic method for gastric motility disorders. This study provides direct observation of virtual electrode polarization pattern during gastric pacing and improves our understanding of the mechanisms underlying gastric pacing..


Assuntos
Marca-Passo Artificial , Estômago , Estômago/diagnóstico por imagem , Estômago/fisiologia , Eletrodos
7.
Nature ; 624(7990): 130-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993711

RESUMO

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Assuntos
Regulação do Apetite , Tronco Encefálico , Ingestão de Alimentos , Retroalimentação Fisiológica , Alimentos , Saciação , Estômago , Regulação do Apetite/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Ingestão de Alimentos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Saciação/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Estômago/fisiologia , Paladar/fisiologia , Fatores de Tempo , Animais , Camundongos
8.
Mol Pharm ; 20(11): 5416-5428, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37878746

RESUMO

The TIM-1 gastrointestinal model is one of the most advanced in vitro systems currently available for biorelevant dissolution testing. This technology, the initial version of which was developed nearly 30 years ago and has been subject to a number of significant updates over this period, simulates the dynamic environment of the human gastrointestinal tract, including pH, transfer times, secretion of bile, enzymes, and electrolytes. In the pharmaceutical industry, the TIM-1 system is used to support drug product design and provide a biopredictive assessment of drug product performance. Typically, the bioaccessibility data sets generated by TIM-1 experiments are used to qualitatively compare formulation performance, and the use of bioaccessibility data as inputs for physiologically based pharmacokinetic (PBPK) modeling for quantitative predictions is limited. To expand the utility of the TIM-1 model beyond standard bioaccessibility measurements (which define the fraction available for absorption), we have developed a computational tool, TIM-1 Data Explorer, to describe the fluid and mass balance within the TIM-1 system. The use of this tool allows a detailed inspection and in-depth interpretation of the experimental data. In addition to mass balance calculation, this model also can be used to describe the critical processes a drug substance would undergo during a TIM-1 experiment, such as dissolution, precipitation on transfer from the stomach to duodenum, and redissolution. The TIM-1 Data Explorer was validated in two case studies. In the first case study with paracetamol, we have shown the ability of the simulator to adequately describe mass transfer events within the TIM-1 system, and in the second study with a weakly basic in-house compound, PF-07059013, the TIM-1 Data Explorer was successfully used to describe dissolution and precipitation processes.


Assuntos
Trato Gastrointestinal , Estômago , Humanos , Simulação por Computador , Duodeno , Absorção Intestinal/fisiologia , Modelos Biológicos , Estômago/fisiologia
9.
Physiol Behav ; 272: 114374, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37806511

RESUMO

Several reports have demonstrated that depressive disorder is related to somatic symptoms including gastrointestinal or genitourinary alterations. The pathophysiological mechanisms underlying the gastrointestinal or genitourinary alterations associated with the depression are still not fully understood. Therefore, this study aimed to evaluate the motor activity of gastrointestinal (fundus of stomach and duodenum) and genitourinary tract (bladder) in a stress-based animal model of depression. Adult male mice were submitted to uncontrollable and unpredictable stress (learned helplessness model), controllable stress and non-stressful situations (control). Then, animals were euthanized and the fundus of stomach, duodenum segments or whole bladder were isolated and mounted in a standard organ bath preparation. We evaluated the contractile effects induced by KCl 80 mM for 5 min or carbachol (acetylcholine receptor agonist). The relaxant effects of isoproterenol (ß-adrenoceptor agonist) were also checked. Animals submitted to the learned helplessness model developed a helpless (depressive-like behavior) or resilient (does not exhibit depressive-like behavior) phenotype. The contractions induced by carbachol were diminished in fundus of stomach isolated from helpless and resilient animals. The isoproterenol-induced fundus of stomach relaxation was reduced in resilient but not helpless mice. The contractions/relaxation of duodenum segments isolated from helpless or resilient animals were not altered. Both helpless and resilient animals showed an increase in the bladder contractions induced by carbachol while the relaxant effects of isoproterenol were reduced when compared to control. Conversely, mice underwent a controllable stress situation did not exhibit alterations in the fundus of stomach or duodenum contraction/relaxation induced by pharmacological agents although a decrease in the bladder contraction induced by carbachol was found. In conclusion, incontrollable and unpredictable stress and not depressive phenotype (helpless animals) or controllable stress could be related to the alterations in motor activity of the fundus of stomach and bladder.


Assuntos
Depressão , Bexiga Urinária , Camundongos , Masculino , Animais , Carbacol/farmacologia , Isoproterenol/farmacologia , Estômago/fisiologia , Contração Muscular/fisiologia , Duodeno
10.
Neurogastroenterol Motil ; 35(11): e14674, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37702071

RESUMO

BACKGROUND: Coping with the ingested food, the gastric regions of fundus, corpus, and antrum display different motility patterns. Intrinsic components of such patterns involving mechanosensitive enteric neurons (MEN) have been described in the guinea pig gastric corpus but are poorly understood in the fundus and antrum. METHODS: To elucidate mechanosensitive properties of myenteric neurons in the gastric fundus and antrum, membrane potential imaging using Di-8-ANEPPS was applied. A small-volume injection led to neuronal compression. We analyzed the number of MEN and their firing frequency in addition to the involvement of selected mechanoreceptors. To characterize the neurochemical phenotype of MEN, we performed immunohistochemistry. KEY RESULTS: In the gastric fundus, 16% of the neurons reproducibly responded to mechanical stimulation and thus were MEN. Of those, 83% were cholinergic and 19% nitrergic. In the antrum, 6% of the neurons responded to the compression stimulus, equally distributed among cholinergic and nitrergic MEN. Defunctionalizing the sensory extrinsic afferents led to a significant drop in the number of MEN in both regions. CONCLUSION: We provided evidence for MEN in the gastric fundus and antrum and further investigated mechanoreceptors. However, the proportions of the chemical phenotypes of the MEN differed significantly between both regions. Further investigations of synaptic connections of MEN are crucial to understand the hardwired neuronal circuits in the stomach.


Assuntos
Fundo Gástrico , Neurônios , Cobaias , Humanos , Animais , Neurônios/fisiologia , Estômago/fisiologia , Intestino Delgado , Colinérgicos , Antro Pilórico
11.
J Physiol ; 601(21): 4751-4766, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37772988

RESUMO

A monosynaptic pathway connects the substantia nigra pars compacta (SNpc) to neurons of the dorsal motor nucleus of the vagus (DMV). This monosynaptic pathway modulates the vagal control of gastric motility. It is not known, however, whether this nigro-vagal pathway also modulates the tone and motility of the proximal colon. In rats, microinjection of retrograde tracers in the proximal colon and of anterograde tracers in SNpc showed that bilaterally labelled colonic-projecting neurons in the DMV received inputs from SNpc neurons. Microinjections of the ionotropic glutamate receptor agonist, NMDA, in the SNpc increased proximal colonic motility and tone, as measured via a strain gauge aligned with the colonic circular smooth muscle; the motility increase was inhibited by acute subdiaphragmatic vagotomy. Upon transfection of SNpc with pAAV-hSyn-hM3D(Gq)-mCherry, chemogenetic activation of nigro-vagal nerve terminals by brainstem application of clozapine-N-oxide increased the firing rate of DMV neurons and proximal colon motility; both responses were abolished by brainstem pretreatment with the dopaminergic D1-like antagonist SCH23390. Chemogenetic inhibition of nigro-vagal nerve terminals following SNpc transfection with pAAV-hSyn-hM4D(Gi)-mCherry decreased the firing rate of DMV neurons and inhibited proximal colon motility. These data suggest that a nigro-vagal pathway modulates activity of the proximal colon motility tonically via a discrete dopaminergic synapse in a manner dependent on vagal efferent nerve activity. Impairment of this nigro-vagal pathway may contribute to the severely reduced colonic transit and prominent constipation observed in both patients and animal models of parkinsonism. KEY POINTS: Substantia nigra pars compacta (SNpc) neurons are connected to the dorsal motor nucleus of the vagus (DMV) neurons via a presumed direct pathway. Brainstem neurons in the lateral DMV innervate the proximal colon. Colonic-projecting DMV neurons receive inputs from neurons of the SNpc. The nigro-vagal pathway modulates tone and motility of the proximal colon via D1-like receptors in the DMV. The present study provides the mechanistic basis for explaining how SNpc alterations may lead to a high rate of constipation in patients with Parkinson's Disease.


Assuntos
Estômago , Substância Negra , Humanos , Ratos , Animais , Estômago/fisiologia , Ratos Sprague-Dawley , Substância Negra/metabolismo , Nervo Vago/fisiologia , Motilidade Gastrointestinal/fisiologia , Colo , Constipação Intestinal/metabolismo
12.
Comput Biol Med ; 165: 107384, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37633085

RESUMO

Gastric motility is coordinated by bioelectric slow waves (SWs) and dysrhythmic SW activity has been linked with motility disorders. Magnetogastrography (MGG) is the non-invasive measurement of the biomagnetic fields generated by SWs. Dysrhythmia identification using MGG is currently challenging because source models are not well developed and the impact of anatomical variation is not well understood. A novel method for the quantitative spatial co-registration of serosal SW potentials, MGG, and geometric models of anatomical structures was developed and performed on two anesthetized pigs to verify feasibility. Electrode arrays were localized using electromagnetic transmitting coils. Coil localization error for the volume where the stomach is normally located under the sensor array was assessed in a benchtop experiment, and mean error was 4.2±2.3mm and 3.6±3.3° for a coil orientation parallel to the sensor array and 6.2±5.7mm and 4.5±7.0° for a perpendicular coil orientation. Stomach geometries were reconstructed by fitting a generic stomach to up to 19 localization coils, and SW activation maps were mapped onto the reconstructed geometries using the registered positions of 128 electrodes. Normal proximal-to-distal and ectopic SW propagation patterns were recorded from the serosa and compared against the simultaneous MGG measurements. Correlations between the center-of-gravity of normalized MGG and the mean position of SW activity on the serosa were 0.36 and 0.85 for the ectopic and normal propagation patterns along the proximal-distal stomach axis, respectively. This study presents the first feasible method for the spatial co-registration of MGG, serosal SW measurements, and subject-specific anatomy. This is a significant advancement because these data enable the development and validation of novel non-invasive gastric source characterization methods.


Assuntos
Motilidade Gastrointestinal , Estômago , Animais , Suínos , Motilidade Gastrointestinal/fisiologia , Estômago/fisiologia , Fenômenos Eletrofisiológicos/fisiologia , Eletrodos , Abdome
13.
AAPS J ; 25(5): 76, 2023 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-37498389

RESUMO

The rate and extent of drug dissolution and absorption from a solid oral dosage form depend largely on the fluid volume along the gastrointestinal tract. Hence, a model built upon the gastric fluid volume profiles can help to predict drug dissolution and subsequent absorption. To capture the great inter- and intra-individual variability (IAV) of the gastric fluid volume in fasted human, a stochastic differential equation (SDE)-based mixed effects model was developed and compared with the ordinary differential equation (ODE)-based model. Twelve fasted healthy adult subjects were enrolled and had their gastric fluid volume measured before and after consumption of 240 mL of water at pre-determined intervals for up to 2 hours post ingestion. The SDE- and ODE-based mixed effects models were implemented and compared using extended Kalman filter algorithm via NONMEM. The SDE approach greatly improved the goodness of fit compared with the ODE counterpart. The proportional and additive measurement error of the final SDE model decreased from 14.4 to 4.10% and from 17.6 to 4.74 mL, respectively. The SDE-based mixed effects model successfully characterized the gastric volume profiles in the fasted healthy subjects, and provided a robust approximation of the physiological parameters in the very dynamic system. The remarkable IAV could be further separated into system dynamics terms and measurement error terms in the SDE model instead of only empirically attributing IAV to measurement errors in the traditional ODE method. The system dynamics were best captured by the random fluctuations of gastric emptying coefficient Kge.


Assuntos
Trato Gastrointestinal , Estômago , Humanos , Adulto , Estômago/fisiologia , Trato Gastrointestinal/metabolismo , Jejum/fisiologia , Esvaziamento Gástrico/fisiologia , Liberação Controlada de Fármacos
14.
J Physiol ; 601(14): 2853-2875, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37154244

RESUMO

Perinatal high-fat diet (pHFD) exposure alters the development of vagal neurocircuits that control gastrointestinal (GI) motility and reduce stress resiliency in offspring. Descending oxytocin (OXT; prototypical anti-stress peptide) and corticotropin releasing factor (CRF; prototypical stress peptide) inputs from the paraventricular nucleus (PVN) of the hypothalamus to the dorsal motor nucleus of the vagus (DMV) modulate the GI stress response. How these descending inputs, and their associated changes to GI motility and stress responses, are altered following pHFD exposure are, however, unknown. The present study used retrograde neuronal tracing experiments, cerebrospinal fluid extraction, in vivo recordings of gastric tone, motility and gastric emptying rates, and in vitro electrophysiological recordings from brainstem slice preparations to investigate the hypothesis that pHFD alters descending PVN-DMV inputs and dysregulates vagal brain-gut responses to stress. Compared to controls, rats exposed to pHFD had slower gastric emptying rates and did not respond to acute stress with the expected delay in gastric emptying. Neuronal tracing experiments demonstrated that pHFD reduced the number of PVNOXT neurons that project to the DMV, but increased PVNCRF neurons. Both in vitro electrophysiology recordings of DMV neurons and in vivo recordings of gastric motility and tone demonstrated that, following pHFD, PVNCRF -DMV projections were tonically active, and that pharmacological antagonism of brainstem CRF1 receptors restored the appropriate gastric response to brainstem OXT application. These results suggest that pHFD exposure disrupts descending PVN-DMV inputs, leading to a dysregulated vagal brain-gut response to stress. KEY POINTS: Maternal high-fat diet exposure is associated with gastric dysregulation and stress sensitivity in offspring. The present study demonstrates that perinatal high-fat diet exposure downregulates hypothalamic-vagal oxytocin (OXT) inputs but upregulates hypothalamic-vagal corticotropin releasing factor (CRF) inputs. Both in vitro and in vivo studies demonstrated that, following perinatal high-fat diet, CRF receptors were tonically active at NTS-DMV synapses, and that pharmacological antagonism of these receptors restored the appropriate gastric response to OXT. The current study suggests that perinatal high-fat diet exposure disrupts descending PVN-DMV inputs, leading to a dysregulated vagal brain-gut response to stress.


Assuntos
Hormônio Liberador da Corticotropina , Ocitocina , Gravidez , Feminino , Ratos , Animais , Ratos Sprague-Dawley , Dieta Hiperlipídica/efeitos adversos , Estômago/fisiologia , Motilidade Gastrointestinal , Nervo Vago/fisiologia
15.
Neuron ; 111(14): 2184-2200.e7, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37192624

RESUMO

Vagal sensory neurons monitor mechanical and chemical stimuli in the gastrointestinal tract. Major efforts are underway to assign physiological functions to the many distinct subtypes of vagal sensory neurons. Here, we use genetically guided anatomical tracing, optogenetics, and electrophysiology to identify and characterize vagal sensory neuron subtypes expressing Prox2 and Runx3 in mice. We show that three of these neuronal subtypes innervate the esophagus and stomach in regionalized patterns, where they form intraganglionic laminar endings. Electrophysiological analysis revealed that they are low-threshold mechanoreceptors but possess different adaptation properties. Lastly, genetic ablation of Prox2 and Runx3 neurons demonstrated their essential roles for esophageal peristalsis in freely behaving mice. Our work defines the identity and function of the vagal neurons that provide mechanosensory feedback from the esophagus to the brain and could lead to better understanding and treatment of esophageal motility disorders.


Assuntos
Subunidade alfa 3 de Fator de Ligação ao Core , Esôfago , Motilidade Gastrointestinal , Proteínas de Homeodomínio , Células Receptoras Sensoriais , Nervo Vago , Animais , Camundongos , Subunidade alfa 3 de Fator de Ligação ao Core/genética , Subunidade alfa 3 de Fator de Ligação ao Core/metabolismo , Esôfago/inervação , Esôfago/metabolismo , Esôfago/fisiologia , Motilidade Gastrointestinal/genética , Motilidade Gastrointestinal/fisiologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Mecanorreceptores/fisiologia , Neurônios Aferentes/fisiologia , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologia , Estômago/inervação , Estômago/metabolismo , Estômago/fisiologia , Nervo Vago/fisiologia
16.
IEEE Trans Biomed Eng ; 70(7): 2046-2057, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37018592

RESUMO

OBJECTIVE: Gastrointestinal magnetic resonance imaging (MRI) provides rich spatiotemporal data about the movement of the food inside the stomach, but does not directly report muscular activity on the stomach wall. Here we describe a novel approach to characterize the motility of the stomach wall that drives the volumetric changes of the ingesta. METHODS: A neural ordinary differential equation was optimized to model a diffeomorphic flow that ascribed the deformation of the stomach wall to a continuous biomechanical process. Driven by this diffeomorphic flow, the surface of the stomach progressively changes its shape over time, while preserving its topology and manifoldness. RESULTS: We tested this approach with MRI data collected from 10 rats under a lightly anesthetized condition, and demonstrated accurate characterization of gastric motor events with an error in the order of sub-millimeters. Uniquely, we characterized gastric anatomy and motility with a surface coordinate system common at both individual and group levels. Functional maps were generated to reveal the spatial, temporal, and spectral characteristics of muscle activity and its coordination across different regions. The peristalsis at the distal antrum had a dominant frequency and peak-to-peak amplitude of [Formula: see text] cycles per minute and [Formula: see text] mm, respectively. The relationship between muscle thickness and gastric motility was found to be distinct between two functional regions in the proximal and distal stomach. CONCLUSION: These results demonstrate the efficacy of using MRI to model gastric anatomy and function. SIGNIFICANCE: The proposed approach is expected to enable non-invasive and accurate mapping of gastric motility for preclinical and clinical studies.


Assuntos
Esvaziamento Gástrico , Motilidade Gastrointestinal , Ratos , Animais , Esvaziamento Gástrico/fisiologia , Motilidade Gastrointestinal/fisiologia , Estômago/diagnóstico por imagem , Estômago/fisiologia , Imageamento por Ressonância Magnética/métodos , Músculos
17.
J Mech Behav Biomed Mater ; 142: 105801, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37068433

RESUMO

The stomach is a vital organ responsible for food storage, digestion, and transport. Stomach diseases are of great economic and medical importance and require a large number of bariatric surgeries every year. To improve medical interventions, in silico modeling of the gastrointestinal tract has gained popularity in recent years to study stomach functioning. Because of the great structural and nutritional similarity between the porcine and human stomach, the porcine stomach is a suitable surrogate for the development and validation of gastric models. This study presents a realistic 3D geometry model of the porcine stomach based on a photogrammetric reconstruction of a real organ. Layer thicknesses of the stomach wall's mucosa and tunica muscularis were determined by more than 1900 manual measurements at different locations. Layer thickness distributions show mean mucosal and muscle thicknesses of 2.29 ± 0.45 mm and 2.83 ± 0.99 mm, respectively. In general, layer thicknesses increase from fundus (mucosa: 1.82 ± 0.19 mm, muscle layer: 2.59 ± 0.32 mm) to antrum (mucosa: 2.69 ± 0.31 mm, muscle layer: 3.73 ± 1.05 mm). The analysis of stomach asymmetry with respect to an idealized symmetrical stomach model, an approach often used in the literature, revealed volumetric deviations of 45%, 15%, and 92% for the antrum, corpus, and fundus, respectively. The present work also suggests an algorithm for the computation of longitudinal and circumferential directions at local points. These directions are useful for the implementation of material anisotropy. In addition, we present data on the passive pressure-volume relationship of the organ and perform an exemplary finite-element simulation, where we demonstrate the applicability of the model. We encourage others to utilize the geometry model featuring profound asymmetry for future model-based investigations on stomach functioning.


Assuntos
Mucosa Gástrica , Estômago , Humanos , Animais , Suínos , Estômago/fisiologia , Músculos , Simulação por Computador , Algoritmos
18.
Neurogastroenterol Motil ; 35(9): e14560, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36912719

RESUMO

The common occurrence of gastric disorders, the accelerating emphasis on the role of the gut-brain axis, and development of realistic, predictive models of gastric function, all place emphasis on increasing understanding of the stomach and its control. However, the ways that regions of the stomach have been described anatomically, physiologically, and histologically do not align well. Mammalian single compartment stomachs can be considered as having four anatomical regions fundus, corpus, antrum, and pyloric sphincter. Functional regions are the proximal stomach, primarily concerned with adjusting gastric volume, the distal stomach, primarily involved in churning and propelling the content, and the pyloric sphincter that regulates passage of chyme into the duodenum. The proximal stomach extends from the dome of the fundus to a circumferential band where propulsive waves commence (slow waves of the pacemaker region), and the distal stomach consists of the pacemaker region and the more distal regions that are traversed by waves of excitation, that travel as far as the pyloric sphincter. Thus, the proximal stomach includes the fundus and different extents of the corpus, whereas the distal stomach consists of the remainder of the corpus and the antrum. The distributions of aglandular regions and of specialized glands, such as oxyntic glands, differ vastly between species and, across species, have little or no relation to anatomical or functional regions. It is hoped that this review helps to clarify nomenclature that defines gastric regions that will provide an improved basis for drawing conclusions for different investigations of the stomach.


Assuntos
Gastropatias , Estômago , Animais , Estômago/fisiologia , Piloro/fisiologia , Fundo Gástrico/fisiologia , Duodeno/fisiologia , Antro Pilórico/fisiologia , Mamíferos
19.
Am J Physiol Gastrointest Liver Physiol ; 324(5): G329-G340, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36809176

RESUMO

Gastric pacing has shown preclinical success in modulating bioelectrical slow-wave activity and has potential as a novel therapy for functional motility disorders. However, the translation of pacing techniques to the small intestine remains preliminary. This paper presents the first high-resolution framework for simultaneous pacing and response mapping of the small intestine. A novel surface-contact electrode array, capable of simultaneous pacing and high-resolution mapping of the pacing response, was developed and applied in vivo on the proximal jejunum of pigs. Pacing parameters including the input energy and pacing electrode orientation were systematically evaluated, and the efficacy of pacing was determined by analyzing spatiotemporal characteristics of entrained slow waves. Histological analysis was conducted to determine if the pacing resulted in tissue damage. A total of 54 studies were conducted on 11 pigs, and pacemaker propagation patterns were successfully achieved at both low (2 mA, 50 ms) and high (4 mA, 100 ms) energy levels with the pacing electrodes oriented in the antegrade, retrograde, and circumferential directions. The high energy level performed significantly better (P = 0.014) in achieving spatial entrainment. Comparable success (greater than 70%) was achieved when pacing in the circumferential and antegrade pacing directions, and no tissue damage was observed at the pacing sites. This study defined the spatial response of small intestine pacing in vivo revealing effective pacing parameters for slow-wave entrainment in the jejunum. Intestinal pacing now awaits translation to restore disordered slow-wave activity associated with motility disorders.NEW & NOTEWORTHY A novel surface-contact electrode array customized for the small intestine anatomy enabled simultaneous pacing and high-resolution response mapping. The spatial response of small intestine bioelectrical activity to pacing was mapped for the first time in vivo. Antegrade and circumferential pacing achieved spatial entrainment over 70% of the time and their induced pattern was held for 4-6 cycles postpacing at high energy (4 mA, 100 ms, at ∼2.7 s which corresponds to 1.1 × intrinsic frequency).


Assuntos
Motilidade Gastrointestinal , Jejuno , Animais , Suínos , Motilidade Gastrointestinal/fisiologia , Intestino Delgado/fisiologia , Estômago/fisiologia
20.
Comput Biol Med ; 153: 106488, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36592609

RESUMO

The contraction activation of smooth muscle in the stomach wall (SW) is coordinated by slow electrical waves. The interstitial cells of Cajal (ICC), specialised pacemaker cells, initiate and propagate these slow waves. By establishing an electrically coupled network, each ICC adjusts its intrinsic pacing frequency to a single dominant frequency, to be a key aspect in modelling the electrophysiology of gastric tissue. In terms of modelling, additional fields associated with electrical activation, such as voltage-dependent calcium influx and the resulting deformation, have hardly been considered so far. Here we present a three-dimensional model of the electro-chemomechanical activation of gastric smooth muscle contractions. To reduce computational costs, an adaptive multi-scale discretisation strategy for the temporal resolution of the electric field is used. The model incorporates a biophysically based model of gastric ICC pacemaker activity that aims to simulate stable entrainment and physiological conduction velocities of the electrical slow waves. Together with the simulation of concomitant gastric contractions and the inclusion of a mechanical feedback mechanism, the model is used to study dysrhythmias of gastric slow waves induced by abnormal stretching of the antral SW. The model is able to predict the formation of stretch-induced gastric arrhythmias, such as the emergence of an ectopic pacemaker in the gastric antrum. The results show that the ectopic event is accompanied by smooth muscle contraction and, although it disrupts the normal propagation pattern of gastric slow electrical waves, it can also catalyse the process of handling indigestible materials that might otherwise injure the gastric SW.


Assuntos
Células Intersticiais de Cajal , Estômago , Estômago/fisiologia , Músculo Liso/fisiologia , Contração Muscular/fisiologia , Cálcio , Células Intersticiais de Cajal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...